Advances in discriminative dependency parsing
نویسنده
چکیده
Achieving a greater understanding of natural language syntax and parsing is a critical step in producing useful natural language processing systems. In this thesis, we focus on the formalism of dependency grammar as it allows one to model important headmodifier relationships with a minimum of extraneous structure. Recent research in dependency parsing has highlighted the discriminative structured prediction framework (McDonald et al., 2005a; Carreras, 2007; Suzuki et al., 2009), which is characterized by two advantages: first, the availability of powerful discriminative learning algorithms like log-linear and max-margin models (Lafferty et al., 2001; Taskar et al., 2003), and second, the ability to use arbitrarily-defined feature representations. This thesis explores three advances in the field of discriminative dependency parsing. First, we show that the classic Matrix-Tree Theorem (Kirchhoff, 1847; Tutte, 1984) can be applied to the problem of non-projective dependency parsing, enabling both log-linear and max-margin parameter estimation in this setting. Second, we present novel third-order dependency parsing algorithms that extend the amount of context available to discriminative parsers while retaining computational complexity equivalent to existing second-order parsers. Finally, we describe a simple but effective method for augmenting the features of a dependency parser with information derived from standard clustering algorithms; our semi-supervised approach is able to deliver consistent benefits regardless of the amount of available training data. Thesis Supervisor: Michael Collins Title: Associate Professor
منابع مشابه
An improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملBootstrapping a neural net dependency parser for German using CLARIN resources
Statistical dependency parsers have quickly gained popularity in the last decade by providing a good trade-off between parsing accuracy and parsing speed. Such parsers usually rely on handcrafted symbolic features and linear discriminative classifiers to make attachment choices. Recent work replaces these with dense word embeddings and neural nets with great success for parsing English and Chin...
متن کاملA generative re-ranking model for dependency parsing
We propose a framework for dependency parsing based on a combination of discriminative and generative models. We use a discriminative model to obtain a kbest list of candidate parses, and subsequently rerank those candidates using a generative model. We show how this approach allows us to evaluate a variety of generative models, without needing different parser implementations. Moreover, we pre...
متن کاملUngreedy Methods for Chinese Deterministic Dependency Parsing
Deterministic dependency parsing has often been regarded as an efficient algorithm while its parsing accuracy is a little lower than the best results reported by more complex methods. In this paper, we compare deterministic dependency parsers with complex parsing methods such as generative and discriminative parsers on the standard data set of Penn Chinese Treebank. The results show that, for C...
متن کاملCombining Generative and Discriminative Approaches to Unsupervised Dependency Parsing via Dual Decomposition
Unsupervised dependency parsing aims to learn a dependency parser from unannotated sentences. Existing work focuses on either learning generative models using the expectation-maximization algorithm and its variants, or learning discriminative models using the discriminative clustering algorithm. In this paper, we propose a new learning strategy that learns a generative model and a discriminativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010